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ABSTRACT 

t 
I 

Using a three f lu id  model, wave equations 

a r e  developed f o r  the  disturbances due t o  cur- 

r en t  o r  hydrodynamic force B O U F C ~ S  i n  a plasma, 

The formal solut ions t o  the  wave equations a r e  

obtained f o r  an elementary current  source., The 

power radiated from the source is given i n  terms 

of these solut ions and, f o r  t he  spec ia l  case i n  

which the  electrons are much h o t t e r  than the  

o ther  two const i tuents ,  the  radiated power i s  

determined i n  de t a i l .  
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c CHAPTER I 

INTRODUCTION 

Although a good deal of work has been done on 
1- 4 the  propert ies  of plasma waves, t he re  has not 

been much e f f o r t  directed towards the problem of 

radiat ion from sources i n  a w a r m  plasma. Noted 

exceptions a r e  the  derivation of inhomogenous 

wave equations f o r  a current source immersed i n  
an i so t ropic  plasma, 5 and a treatment of power 

radiated from a current source i n  an electron 

gas . 6 

In t h i s  thesis we f i r s t  extend the  r e s u l t s  of 

reference 5 t o  include hydrodynamic force  sources. 

We then solve the  wave equations f o r  an elementary 

current source and formulate a procedure f o r  study- 

ing the  radiated power. Lastly, we determine the  

radiated power f o r  a range of cases f o r  which 
~~~~ ~~~~~~~ 

~ ~~~ ~ 
~~~~~~ 

~~ 

solut ions t o  the  dispersion r e l a t ion  a r e  available.  

M , K . S .  u n i t s  a r e  used throughout. 



CHAPTER I1 

TKE PLASMA EQUATIONS 

b 
B 
i 
E 
I t 

The s t a r t i n g  point f o r  our analysis i s  a s e t  of 

th ree  coupled hydrodynamic equations. They cons is t  

respectively of the  cont inui ty  equation, the momentum 

t ranspor t  equation, and the adiabatic energy t rans-  

port  equation. 

- v ) + -  -as F 

b ab 8 m a  

~~~ The momentum eqmkton 31- 'rseetr iimktfi- ~ ~ 

include an a r b i t r a r y  hydrodynamic force  source, gas. 

In  the  above, ma,  N a ,  qa, xa and Pa  a r e  the  mass, 

number density, charge, mean velocity,  and pressure 

f o r  p a r t i c l e s  of type a ( a  i s  the species index e, 

1, n f o r  electrons,  ions, and neu t r a l  p a r t i c l e s  

regpectively),  The symbols E and - H represent 

l 
I 

2 
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k 
i 
t 
E 
I 

e l e c t r i c  and magnetic f i e l d  s t r e n g t h  and Fo is t h e  

permeabi l i ty  of f r e e  s p a c e .  

t he  e f f e c t i v e  c o l l i s i o n  frequency f o r  momentum 

t r a n s f e r  for p a r t i c l e s  of t y p e  a w i t h  those of type  

b. 

frequency f o r  p a r t i c l e s  of t ype  a. The c o l l i s i o n  

f requencies  s a t i s f y  the  r e l a t i o n 5  

The zymbol dab denotes 

We w i l l  use  sa t o  denote t h e  t o t a l  c o l l i s i o n  

The symbol &. is the  hydrodynamic d e r i v a t i v e  

(&- + 1 . 9 )  and b- is t h e  ratio of s p e c i f i c  hea t s  f o r  

cons t an t  pressure  and volume. 

I n  a d d i t i o n  t o  t h e  above we use t h e  Maxwell 

c u r l  equat ions : 

I n  the above eo is t h e  p e r m i t t i v i t y  of f ree  space 

and - J is the  source cu r ren t  p lus  t h e  conduction 

c u r r e n t  and, i n  a plasma medium, is given by 

- J = e(N& - Ne&) -t Js 
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6 
I 
I 

We assume an i n i t i a l l y  quiescent  plasma with no 

E o r  H f i e l d  o r  ordered ve loc i ty  and only zero  order  

pressure  and number densi ty .  If w e  then assume a 

small d is turbance  with time dependence e the 

o t h e r  v a r i a b l e s  i n  t h e  problem w i l l  t ake  t h e  form: 

- - 

(2.8a) 

(2.8b) 

- iot - E = E(r)e 

- H = g ( r ) e  - i o t  

I n  the above nao i s  the  ambient number dens i ty  f o r  

p a r t i c l e s  of type a and 

where pa0 i s  the ambient pressure  f o r  p a r t i c l e s  of 

type a. If we s u b s t i t u t e  t h e  l i n e a r i z e d  v a r i a b l e s  

i n t o  Equations (2.1) t o  (2.7) and combine (2.1) with 

(2.3) and (2.6) wi th  (2.7) t h e r e  r e s u l t s  
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(2.10) 

v x E = iWP& (2.11) 

v x = - l i J t ~  + en0(_v,"Xe) t Js (2.12) 

Equation (2.9) may serve as the  def in i t ion  of &a. 

In  Equations (2.9) t o  (2.12) and henceforth we drop 
the  e' idt . 



CHAPTER I11 

THE TRANSVERSE WAVE EQUATION 

It i s  possible t o  obtain a wave equation f o r  

t he  - H f i e l d  using Equations (2.10), (2 .U.)3 snd 

(2.12). 

of (2.12) w e  obtain 

Combining Equation (2.11) with t a e  c u r l  

We can eliminate e x p l i c i t  dependence on the  vel- 

o c i t i e s  by taking the  c u r l  of Equation (2.10) and 

combining the r e s u l t  w i t h  (2.11) . The r e s u l t  is 

trhcrc - Sa = VXVa. - 
and solved f o r  (Si-Se) - -  and the  solut ion subs t i t u t ed  

i n t o  Equation (3.1). 

There r e s u l t s  

Equation (3.2) can now be expanded 

6 
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In  Equation (3.3) the ca a re  given by 

and 

and 

t he  e lec t ron  plasma frequency. 

To obtain Equations (3.4) and (3.5) it i s  

necessary t o  assume only the  r e l a t ive ly  modest 

condition that  the  ion and neu t ra l  temperatures do 

not  greatly exceed the electron temperature. 
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I f ,  on the o ther  hand, the temperature of the  

electrons does not  great ly  exceed tha t  of the  other 

two species Equation (3.5a) reduce8 t o  the  familiar 

form 

2 

and i n  each of Equations (3.4) the last  term i n  

the  denominator can be neglected. 

i s  va l id  f o r  a rb i t r a ry  plasma propert ies  i f  t he  

frequency satisfies the inequality:  

Equation (3.6) 

If Equation (3.7) is sa t i s f i ed ,  t he  c, are given by 

ci = - ce (3.8b) 

i I 

Here and elsewhere we use "much grea te r  than (77)"  

t o  denote an inequality a t  l e a s t  of o r d e r i G  



CHAPTER I V  

THE: LONGITUDINAL, WAVE EQUATION 

The longi tudinal  waves can be described by t h e  

We begin by taking the  divergence of var iables  Qa. 

Equation (2.10) and subs t i tu t ing  f o r  E from Equation 

(2.12) . The r e s u l t  wri t ten exp l i c i t e ly  i s  
- 

where 

(4.2a) 

(4.2b) 

9 
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and 

Y 

the a species acoustic velocity.  

We also have 

(4.ec) 

(4.2d) 

It can e a s i l y  be shown t h a t  

/ab Aab =lGba (4.2e) 

The set  of Equations (4.1) can be decoupled by 

a matrix diagonalization procedure. In  order t o  

proceed fu r the r  we assign the  following symbols t o  

the matrices i n  Equation ( b e l )  : 

CQI = 



11 

+ i w  

c J 

For fu tu re  use we also define 

0 .  

p e i  

0 

~ (4.3c) 

(4.48) 

We also note  a t  th i s  point t ha t  B is symmetric 

i. e. 

( 4 . 4 4  

Equation (4.1) can be transformed t o  a se t  of 

s c a l a r  wave equations by the appropriate s imi l a r i t y  

transformation on t h e  matrix [A]. Our f i r s t  s t e p  

is t o  use Equation (4.4b) t o  transform [A] t o  the 

symmetric matrix [B]. 

matrix algebra states t h a t  a real  symmetric matrix 

PyI elementary theorem of 

can be diagonalized by an orthogonal transformation, 

the column vectors  of the transforming matrix being 

the  normalized eigenvectors of the matrix t o  be 

diagonalized. It is eas i ly  shown tha t  the above 



L 
I 

12 

theorem is  s t i l l  co r rec t  with the qua l i f i ca t ion  

tt real" deleted, provided we properly define 

orthogonal. The orthogonality property i s  

where ljk i s  the  Kroniker d e l t a  and [Xk] i s  the 

"k" t h  eigenvector. If we now form a modal matrix 

[MI from the  column vectors 

where [d] is a diagonal matrix composed of the  

eigenvalues of [B] which, of course, are also 

the eigenvalues of [A]. 

w i l l  be denoted by the symbol kj 

The "j" t h  eigenvalue 
2 

It is thus appropriate t o  transform the  s e t  

of var iables  LQ] t o  a new s e t  

formation 

by the  trans- 

If we subs t i t u t e  Equation (4.7) i n t o  (4.1) and 

premultiply by [ M ~ T  [PI'' we have 



I 

o r  i n  a more convenient notation 

(V2 + kf) bj = SJ (4.9) 

where Sj i s  the"j '  t h  element of the column matrix 

obtained by performing the matrix muit ipl icat ion 

indicated on the r i g h t  hand s ide of Equation (4.8) 

Here and elsewhere we do not  sum on repeated 

indices  unless indicated. 

To compute the  elements of [M] we must f i r s t  

f i n d  the eigenvalues kj by solving the dispersion 

r e l a t ion  

2 

det. [. - k21] = 0 (4.10) 

This is a t h i rd  order equation i n  k2 and solut ions 

a re  not  avai lable  f o r  completely a r b i t r a r y  plasma 

propert ies .  Approximate solut ions a re  known, 

however, f o r  ce r t a in  of t he  more in t e re s t ing  ranges 

of plasma parameters. Using those approximate 

eigenvalues we can f ind a modal matrix, va l id  i n  

the same range, by the  usual techniques. 

8 
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i CHAPTER V 

PLASMA ENERGY RELATIONS 

Before proceeding with solut ions t o  the wave 

equations it i s  desirable t-c! fommllzte the rad- 

i a t ed  power i n  terms of the variables  H and (LJ. 

The t o t a l  energy s tored in the  plasma i s  given by 

- 

In  Equation (5.1) the  f i r s t  in t eg ra l  i s  energy 

s tored I n  the  e l e c t r i c  and magnetic f i e lds .  The 

second term is the  t o t a l  energy i n  f l u i d  motion 

with f a  being the veloci ty  d is t r ibu t ion  function 

f o r  pa r t i c l e s  of type a and 

e a  =,a v + c  ,a 

where 

ve loc i ty  of the par t ic les  of type a. Performing 

the integrat ion over $ we have 

is the  ordered veloci ty  and La the random 

14 

(5.3) 
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I 

Since V a  is a constant i n  t he  integrat ion with 

respect t o  $ and the  average value of 

the las t  term in Equation (5.3) vanishes. 

we have by def ini t ion:  

- 
is zero, 

Also 

Jfad3F - N, (5.4) 
5 

and 

ma J ca2fad3$ = 3NakTa 

P 
Combining these r e s u l t s  w 

3Pa (5.5) 

t h  Equation (5.1) we have: 

If we take a partial  derivative w i t h  respect t o  

time, s u b s t i t u t e  i n  Maxwell's c u r l  equations and 

note that  

(5.7) 

If we now subs t i t u t e  Equations (2.1), (2.2), and 

(2.3) i n t o  Equation (5.8) we have: 
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The las t  term i n  Equation (5.9) i s  negative 

d e f i n i t e  and represents the energy fed from ordered 

motion i n t o  thermal motion v i a  co l l i s ions .  

energy is, of course, s t i l l  i n  the  medium. Had w e  

used a more complete energy t ransport  equation, 

including the e f f ec t  of co l l i s ions ,  rather than 

the adiabatic version we would heve &I e q ~ a l  

pos i t ive  de f in i t e  term showing the  energy increase 

i n  thermal motion. In  t h i s  same connection i t  

should be noted that  the term -JOE i n  the  integrand 

of Equation (5.8) i s  not present i n  Equation (5.9) a 

This term represents an energy t r ans fe r  between the 

e l e c t r i c  f i e l d  and f l u i d  motion and is cancelled by 

a l i k e  term resu l t ing  from the subs t i tu t ion  of the 

momentum equation i n t o  Equation (5.8) . 

This 

- -  

If w e  omit the  heating term involving the 
I 

c o l l i s i o n  frequencies and apply Gauss's Theorem, 

the rate a t  which energy crosses  the  boundary of a 

volume i s  seen t o  be: 



I 

Equation (5.3.0) i s  then time averaged over one 

period of the appl ied  frequency. It is, of course, 

necessary t o  r e t a in  terms t o  second order  i n  

computing power. 

The electromagnetic term i n  the  integrand 

of Equation (5.10) i s  eas i ly  time averaged t o  y ie ld  

,em S = 4 Re - -  EM* (5.11) 

The second term i n  Equation (5.10) i s  t h i r d  order 

i n  Va so  it i s  discarded. The t h i r d  term gives 

two second order  contributions,  one involving the  

f i rs t  order pressure times the f i r s t  order veloci ty ,  

and one involving the  zero order pressure times the 

second order  veloci ty .  

order quant i t ies  we write 

To avoid dealing with second 

(.5* 12) 

P Expanding 3 by use of the adiabat ic  energy trans- 
Pa 

port  equation we have, t o  f i r s t  order 
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hence 

(5.14) 

Transforming the  surface i n t e g r a l  of the f i r s t  term 

back t o  a volume in t eg ra l  by use of Gauss's Theorem 

and subs t i t u t ing  from the  cont inui ty  equation 

we have 

(5.15) 

which averages out t o  zero since, on the  average, 

the amount of f l u i d  i n  a volume i s  unchanged. Time 

averaging the  second term i n  Equation (5.14) i n  the  

usual way the  f l u i d  energy f l u x  i s  seen t o  be 



I 

i 

I 

Equations (5.11) and (5.16) are combined t o  y ie ld  

the t o t a l  energy flux: 

- S = 3 Re [ E f i *  - -  + p&*] (5.17) 
0. 

We can modify Equation (5.17) so that  S depends 

only on H and Qa by writ ing g9 p ' ,  and V i n  terms of 

these variables.  The dependence on E and p t  can be 

eliminated immediately by use of Equations (2.9) 

and (2.12) , thus: 

- 
- - 

- 

(5.18) 

a 

We have used Equation (2.12) i n  the  source f r e e  

form and thus intend Equation (5.18) t o  be va l id  

everywhere i n  the  plasma excluding the  source. 

To eliminate the we consider the  source 

f r e e  form of Equation (2.10) with - E and p i  replaced 

by the  use of Equations (2.12) and (2.9) respectively,  

[::: 
Ane 

Aei 

A l l  

Ani 

q 
Ann 

- 
IeT 
IiT 

h T  
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I n  Equations (5.19) we have s p l i t  the  ve loc i ty  i n t o  

a part that  I s  t he  c u r l  of a vector and i s  re la ted  

t o  the  transverse waves and a part t ha t  i s  the  

gradient of a sca l e r  and i s  re la ted  t o  the  long- 

i t u d i n a l  waves, i.e. 

By use of Equation (5.20) the  energy densi ty  S 

decomposes na tu ra l ly  i n t o  four  parts : 
- 

where 

r I 

(5 .224 
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--. c 

I 

(5.228) 

We define I [GI = [A] 

of[GJ .'-;.We then inver t  [A], solve Equations (g.19) 
f o r  the f l u i d  ve loc i t i e s  and subs t i t u t e  t h e  r e s u l t s  

i n t o  Equations (5.22) obtaining: 

and Gab = the  "ab"th element 

and 

(5.23) 

(5.24) 

The reason f o r  t he  s p l i t  of S i n t o  four  parts - 
I s  now evident. 

the H f i e l d  and can thus be character ized as power 

i n  the  t ransverse wave. 

- STL &d ST, involve products of tranaverfie w i t h  

longi tudinal  po ten t ia l s  and make no ne t  contr ibut ion 

t o  radiated power. This can be demonstrated by 

reca l l ing  that Sm + SJT enters  power calculat ions 

as the  integrand of a surface Integral .  Using 

Gaussls Theorem we can write the power car r ied  by 

these waves as 

The f i r s t  part, Em, involves only 

The second and t h i r d  parts, 
I 
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which vanishes s ince the integrand is the  divergence 

of a cu r l .  

The l a s t  term i n  Equation (5.21) i s  bes t  

handled i n  matrix notation. 

thus be writ ten: 

Equation (5.22d) can 

If we s u b s t i t u t e  Equations (4.6) and (4.7) i n t o  

Equation (5.26) we have: 

(5.27) 

The above expression does not, i n  general, 

reduce t o  canonical form i n  $J. 
that  [MJ i s  not orthogonal i n  the  hermitian sense 

unless we neglect co l l i s ions  thereby making a l l  of 

the var iables  of the  problem real .  We do not 

evaluate the elements of [MI o r  the above 

The reason is 

expression i n  the general case s ince  a general  

so lu t ion  t o  the dispersion r e l a t ion  i s  not avai lable ,  

There a r e  two spec ia l  cases f o r  which solut ions 

t o  the  dispersion re la t ion  a re  avai lable ,  The f i r s t  and 

most obvious is the  co l l i s ion le s s  case, f o r  which 
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t h e  neu t r a l  wave i s  completely uncoupled from the  

other  two, thus reducing the order of the disper- 

sion re lat ion.  

approximate solutions t o  the  dispersion r e l a t ion  

a r e  ava i lab le  i s  t h a t  i n  which the  electrons a r e  

much h o t t e r  than the other two const i tuents ,  

These cases will be t rea ted  separately in a later 

chapter 

The other case f o r  which good 

8 
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CHAPTER V I  

SOLUTIONS T O  THE WAVE EQUATIONS 

FOR AN ELEMENTARY CURHENT SOURCE 

The methods of solut ion of the transverse 

wave equation a re  qui te  analogous t o  the equiva- 

l e n t  f r e e  space problems and the  longi tudinal  

wave equations necessi ta te  l i t t l e  modification. 

The usual  procedure i s  t o  solve the  equations 

f o r  an elementary source and use the  r e su l t  as 

a Green's Function f o r  more complicated sources. 

We w i l l  obtain the solutions f o r  an elementary 

cur ren t  source described by 

where A. i s  an tunglitude constant with drmenslons 

of amp-meters. 

th i s  ~ o u r c e  I s  

The transverse wave equation for 

= A, 2, x Vcf(r)  - 

The longi tudinal  wave equation f o r  the 

elementary current  source i s  
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where X i j  i s  the "1"th element of the " j ' l th  

normalized eigenvector. 

The solut ions are obtained as follows: 

We define the auxi l ia ry  functions and O j  such that 

and 

Since any l i n e a r  vector operator commutes w i t h  

the  Eaplacian w e  have 

and 

(v* -k k j 2 )  Qjz-d(x) (6.6b) 

The solut ions a re  well  known and are  given by: 

ikTr Y = & e  ( 6-74 

(6.7b) 1 ikJ  r 9 .= rn e 
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Combining Equation (6.7a) w i t h  (6.4) and (6.7b) w i t h  

(6.5) we obtain: 

The c u r l  of Equation (6.8) and the gradient of 

Equation (6.9) a re  computed and subs t i tu ted  i n t o  

Equations (5.23) and (5.27) respect ively i n  order 

t o  ca l cu la t e  radiated power. This calculat ion,  

f o r  the  more complicated longi tudinal  waves, I s  

deferred t o  the  next chapter. For the  transverse 

wave we r e t a i n  i n  our power density only the  term 

which dominates a t  a distance, from the  source, 

l a rge  compared t o  a wavelength. The source 

indeed t r ans fe r s  energy t o  the plasma v i a  the  near 

f i e l d  terms, bu t  for waves which are not  too 

s t rongly attenuated the energy d iss ipa ted  i n  t h e  

near f i e l d  is small. Thus, outaide the  source 

region, Equations (5.23) and (6.8) can be combined 

t o  yield:  

(6. io) 



If we consider only the  usual conditions f o r  which 

oe >> $e then the  wave number i s  almost pure real 

above the  plasma frequency and almost pure imag- 

inary below it. Thus, a t  frequencies below the  

plasma frequency the  transverse wave is st rongly 

damped and no appreciable power i s  radiated beyond 

the near f i e l d .  

frequency the  wave is l i gh t ly  damped and 

A t  frequencies above the plasma 

2 2  For 0 -we 7> 3 e Y 2  Equation (6.10) becomes: - 
cr) 

(6.11) 

(6.12) 

The t o t a l  power car r ied  away by t h i s  wave can be 

found by evaluating a closed surface in tegra l .  

We shall choose a surface close enough t o  the  

aource t h a t  the exponential damping can be neglected, 

ye t  beyond the range of t he  near f i e ld .  The r e s u l t  
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This, as expected, i s  i n  agreement with the result 

of Ref 6*. In which only electron motions are 

considered. 

*There i s  a factor of 2 difference due t o  a 

t r i v i a l  error introduced i n  Equation 35 of Ref. 6. 



CHAPTER V I 1  

RADIATION IN LONGITUDINAL WAVES 

In order t o  obtain usefu l  solut ions t o  the  

longi tudinal  wave equations w e  must f i r s t  have 

the roots of t he  dispersion r e l a t ion  (Equation 

(4.10)) . 
a re  ava i lab le  f o r  two spec ia l  cases. The f i r s t  

of these2 which we shall c a l l  Case 1 applies t o  

a l l  s i t ua t ions  In which co l l i s ions  can be 

neglected completely. Solutions t o  the  disper- 
sion r e l a t ion  a re  a l so  avai lable  8 f o r  a plasma 

i n  which the electrons a re  much ho t t e r  than the  

other two const i tuents .  We shall divide th i s  

category i n t o  two cases: 

of ionizat ion i s  such t h a t  peo >. Pno, and Case 

3 if the degree of ionization i s  so low that  

pno Peo i n  s p i t e  of the high electron temper- 

ature.  We w i l l  take these three  cases i n  order, 

f i rs t  ca lcu la t ing  the modal matrices and then the  

power flow. 

As s t a t ed  previously, approximate roots 

Case 2 i f  t he  degree 
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CALCULATION OF MODAL MATRICES 

Case 1: 

If w e  neglect c o l l i s i o n s  e n t i r e l y  the  exact 

roots of the dispersion r e l a t ion  (Equation (4.10)) 

are given by: 

2 
&J G2 = -  
Un2 

(7.2) 

Since there  a re  no co l l i s ions ,  the neu t r a l  

p a r t i c l e  wave w i l l  not  be excited by a current  

source and' Equation (7.2) is of academic in t e re s t .  

Equation (7.1) reduces t o  a form which ie more 

e a s i l y  in te rpre ted  If we separately examine d i f f e ren t  

portions of t he  spectrum. 

If tu2 2) (1 +A&4/1* we have: 

z- %* 
k12 =,- (e lectron wave) (7.3a) 

Ue 

(ion wave) (7.3b) 



I -  
Uaing these approximate roots the modal matrix 

can be calculated by the usual methods, 

frequency range i t  i s  given By: 

In th is  

[M]Z 10 1 0 (7.4) 

If, on the other hand, a*<< (1  +flie2)"i2 the 

two roots of Equation (7.1) reduce to: 

2 
0 

k12 7 ("iont' wave) ( 7 . 5 4  

(damped electron wave) (7.5b) +-- ui2 
b2 

where 

and 

(7.5c) 

( 7 . 5 4  
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The f i r s t  of these i s  an osc i l l a t ion  involving both 

electrons and ions (although it  i s  often ca l l ed  an 

"ion" wave) while the  second root, a l so  involving 

both electrons and ions, i s  an evanescent wave 

( f o r  which there  can be no power flow). 

frequency range the  modal matrix i s  given by: 

In t h i s  

[MI 

0 - 

1 0 

0 1 

(7.6) 

I n  ca lcu la t ing  the matrix elements of Equation 

(7.6) we have retained a l l  terms t o  the order of 

O2 (which i a  assumed t o  be very small). The q 
reason f o r  th i s  i s  that using only the  dominant 

terms i n  the  appropriate eigenvector would give 

us a n u l l  r e s u l t  f o r  the amplitude of the  "ion" 

wave . 
Case 2: 

If the  temperature of the  electrons i s  much 

g rea t e r  than tha t  of the other  two species, and 

t h e  degree of ionization i s  high enough that 

Peop'pno 9 the  high frequency (02)>Y2) roots 
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are given by: 

2 -02-ue2+i W& 
kl = (electron wave) 

Ue2 

2 
k22 z% (ion wave) 

U i  

2 =% (neutral wave) (7.7c) 
k3 un 

The modal matrix w e  obtain for this s e t  of 

conditions is given by: 

r 
1 

I 2:Jne 
L 

1 

1 
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where 

The roots for the same plasma properties and 

the frequency range dnL4@L4q are given by: 

where 

k l  2 ,ut& = 7 (1  + -) d 3.' ("ion" wave) 
0 UP 

(7.10a) 

2 -@.$+iwJi 
k2 (damped plasma wave) (7 lob) 

UI2  

2 u2+io3, k3 z ' ~  (neutrcal wave) 
Un 

I m 
J = 3n + + i$ (7.. 11) 
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The modal matrix f o r  th i s  frequency range is given by: 

[MI % 

1 
2 

-4 e ( 1%) 

1 

.. J. 

1 

I n  computing the  r e su l t s  f o r  Equation (7.12) 

w a s  again necessary t o  ca lcu la te  a higher 

(7.12) 

it 

approximation f o r  X21 t o  avoid obtaining a n u l l  

r e s u l t  f o r  the  weakly driven "ion" wave ( w i t h  

phase ve loc i ty  Up).  

applied t o  X12 i n  the  i n t e r e s t  of consistency. 

The same correct ion was 

The low frequency (Ud<Qn) roots f o r  t h i s  

case a r e  modified somewhat from the  above. The 

''ion" wave becomes one which involves motion of 

a l l  th ree  species the  root being given by: 

k 1 2 e $  [. + g,] ( t o t a l  acoustic wave) (7.13) 

The damped plasma wave is s t i l l  evanescent i n  

t h i s  range and s t i l l  has the  same root (Equation 
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I 
I 
I 
1 
I 
E 

I 
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(7.10b)). 

root as above (Equation ( 7 . 1 0 ~ ) ) .  

matrix f o r  t h i s  range i s  given by: 

The neu t r a l  wave a l so  has the same 

The modal 

1 -4.e 

1 

(7.14) 

In  Equation (7.14) we have calculated a higher 

approximation f o r  only these elements (X21 and X23) 

which would otherwise give a n u l l  r e s u l t  f o r  

weakly driven wave amplitudes. 

Case 3: 

If the  degree of ionization is so low tha t  

Pno>>Peo i n  s p i t e  of T,)>Tn the  r e su l t s  of Case 2 

must be modified at low frequencies. SpecificalQy, 

f o r @ < < $ '  the  roots of the dispersion r e l a t ion  

become: 

2 id1 

UP 
kl Z 7 (damped "ion" wave) (7.1%) 

- 4 p + i W J i  

u i2  
k2* * (damped plasma wave) (7.15b) 
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I 
I 
I 
I 
c 
1 
I 
I 
I 
I 
1 
I 

A =  

The modal matrix is given by: 

(7.1%) 

(7.15f) 

Aen 

1 

L 

(7116) 

We have again calculated a higher approximation 

only f o r  the elements $1 and $3. 
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POWER RADIATED 

The modal matrix i s  subs t i tu ted  i n t o  previous 

r e s u l t s  i n  two places. 

w i t h  the  appropriate eigenvalue i s  subs t i tu ted  

i n t o  Equation (6.9) t o  f ind  the longi tudinal  wave 

poten t ia l s  Oj. 
subs t i tu ted  i n t o  Equation (5.27) i n  order t o  f i n d  

the longi tudinal  wave power density. 

Each column vector, along 

I n  addition the modal matrix i s  

It can be d i r e c t l y  ve r i f i ed  tha t ,  f o r  each 

modal matrix calculated i n  t h i s  chapter, the 

dominant terms of the matrix product [.);[MI a re  

on the diagonal. That I s ,  the  diagonal terms a re  

a l l  approximately uni ty  and the  off diagonal terms 

a r e  a l l  much smaller. As a re su l t ,  f o r  a l l  of the  

cases we a r e  considering here, Equation (5.27) 

reduces t o  

The radiated power corresponding t o  each term 

i n  Equation (7.17) is found by subs t i t u t ing  the  

solut ions f o r  (pj i n t o  Equation (7.17) and taking 

a closed surface in t eg ra l  near enough, t o  the  

source, t o  neglect the exponential decay fac tor .  
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The general r e s u l t  is: 

We note, a t  t h i s  point, that; a l l  of the  

solut ions t o  the dispersion re la t ion  do not  

correspond t o  propagating waves. I n  each case 

the  so ca l l ed  "damped plasma wave" (Equations 

(7.5b), (7.10b), and (7.15 'b))  i s  evanescent and 

cannot account f o r  any power flow. 

The appropriate eigenvector i s  subs t i tu ted  

i n t o  Equation (7.18) i n  order t o  determine the 

power car r ied  away by each wave. Results a r e  

computed separately f o r  each frequency range 

and each case. 

a l l  these Cases a r e  iden t l ca l  except f o r  the 

absence of a neu t r a l  wave f o r  Case 1. Hence, f o r  

a l l  Cases and U%) LJ12( l+Aie2) we have: 

The hlgh frequency r e s u l t s  f o r  

(7.19) 



Also f o r  bl%>Wi2(l+%e2) and Cases 2 and 3 we 

have: 

r t o  

(7.20) 

The three  waves, i n  this  frequency range, are 

simply electron, ion, and neu t r a l  sound waves. 

A 8  expected, Equation (7.19) agrees with the  

r e s u l t  of Ref. 6 i n  which only electron motion 

was considered. 

In  the lower frequency ranges we consider 

each case separately. 

Case 1: 

In a co l l i s ion le s s  plasma there  is only one 

wave excited by a current aource i n  the  frequency 

range Y2C<ui2(l+&e2) . 
t he  neu t r a l  wave and the electron wave I s  

evanescent. 

given by: 

There can be no coupling t o  

The power In the "ion" wave i s  
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(7.22) 

This r e s u l t  decreases very r ap id ly  a8 w becomes 

small compared t o  As =entimed ea r l i e r ,  

re ta in ing  only the dominant term i n  each element 

of the appropriate eigenvector would lead t o  a 

n u l l  r e su l t  f o r  th i s  wave. 

Case 2: Te>'Ti, Tn; Peo>)Bno 

In  the  frequency range %LdO<&Ji both the 

rrion" and neu t r a l  waves can propagate and both 

a r e  excited by a current source. The power i n  

each is given respectively by: 

2 2  2 2 
~o .a Y &c2 AeJJn N e n h  

pLL3 = 12vup2un (TOT) 

(7.23) 

(7.24) 

In  the  low frequency range (@4<Qn) the  ions 

and electrons become coupled t o  the  neut ra l s  and 

the character  of the "ion" wave changes t o  a 

t o t a l  acoustic wave. The associated power flow 
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I s  given by: 

In  t h i s  same frequency range the  power i n  the  

neu t r a l  wave I s  given by: 

Case 3: 

(7.26) 

I n  the frequency range 3'<t#ccWi both "Ion" 

and neu t r a l  waves can propagate and both a re  

excited by a current  source. The r e su l t  f o r  

power In  the  "ion" wave I s  l den t l ca l  t o  the  

equivalent r e su l t  f o r  Case 2, l.e.,  Equation (7.23). 

The power In t he  neut ra l  wave i e  a l so  given by 

Equation (7.24) . 
qu i t e  d i f f e ren t  than those of Case 2. 

"Ion" wave malntalne i t s  Iden t i ty  a l l  of the way 

down toom0 and the neut ra l  wave turns  i n t o  the 

t o t a l  acoustic wave. 

For &ad' however, t he  r e su l t s  a r e  

Here the 

The power In the "ion" wave 

is given by: 

(7.27) 
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and the t o t a l  acoustic wave power is: 

Qual i ta t ive  resu l t s  f o r  power radiated a re  

depicted graphically i n  Figs. 1, 2, and 3 f o r  

Cases 1, 2, and 3 respectively. A l l  curves a re  

normalized r e l a t ive  t o  the asymptotic value of 

the power i n  the electron wave, 1.e. 

(7 .29 )  

The segments of curves are connected by 

dashed l i nes  i n  the  frequency ranges where 

calculat ions were n o t  made. The curves f o r  each 

wave are  labeled according t o  the high frequency 

iden t i ty  of the wave. 

In  a l l  cases the ion wave appears t o  be the  

most e f fec t ive  In removing power from the source 

a t  high frequencies. 

above Oe, the electron wave a l so  ca r r i e s  away much 

more power than the  transverse wave. 

For frequencies not  too far  
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A t  lower frequencies (4<%) the electron 

acoustic and transverse waves cease t o  propagate, 

The ion wave turns  i n t o  the "ion" o r  electron-ion 

acoustic wave which, as noted ea r l i e r ,  is very 

weakly coupled t o  a current source. (Recall  that 

it was necessary t o  use an improved approximation 

t o  the modal matrix i n  order t o  obtain a non-zero 

r e su l t  f o r  t h i s  wave.) 

curves the  amplitude of t h i s  wave fa l l s  off very 

rapidly with decreasing frequency. 

A s  can be seen from the 

In Case 2 the  plasma acoustic wave becomes 

the  t o t a l  acoustic wave a t  very low frequency, 

whereas i n  Case 3 the neut ra l  wave becomes the 

t o t a l  acoustic wave a t  low frequency. In  both 

cases the wave power has the  frequency dependence 

&J4 which is cha rac t e r i s t i c  of these weakly 

driven waves 

Another i n t e re s t ing  aspect of t he  curves I s  

the  n u l l  r e s u l t  ( t o  t h i s  l eve l  of approximation) 

f o r  the  neu t r a l  wave a t  one pa r t i cu la r  frequency. 

Col l is ions w i t h  electrons and ions always oppose 

each other  In  es tabl ishing t h i s  wave and apparently, 

at  t h i s  frequency, t h e i r  e f f ec t s  cancel. 
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Fig. 1, Radiated Power for Case 1 

,A ,  Trasleveree wave 
B, Electron wave 
C. Ion wave 
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F i g ,  2, Fiadiated Power for  Case 2 

A. Transverse wave 
B. Electron wave 
C. Ion wave 
D, Neutral wave 
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Fig. 3. Radiated Power for Case 3 

A. Transverse wave 
B. Electron wave 
C, Ion wave 
D. Neutral wave 



C ONC LIJS ION 

I n  this  thes i s  we have formulated a procedure 

f o r  t r ea t ing  rad ia t icn  fro3 s ~ u r c a s  i n  a p a r t l y  

ionized gas. We have carr ied the  method to i t s  

conclusion f o r  the  case of an elementary current  

source, calculat ing the  power carr led away from 

such a source by each wave and noting which waves 

can be s t rongly excited by a current  source. The 

f a c t  that  ce r t a in  waves cannot be s t rongly excited 

by a current  source, i r respect ive of source 

geometry, i s  qui te  consis tent  with the accepted 

physical picture  of these waves. A l l  of the  waves 

f o r  which this  fact; was noted ( the  "ion" waves f o r  

&uq and the  t o t a l  acoustic waves f o r  "+O) 

involve co l lec t ive ,  i n  phase, o sc i l l a t ions  of 

e i t h e r  e lectrons and ions or  electrons,  ions, and 

neutrals .  (Moreover, as t he  frequency decreases 

the  phase coupling of electrons and ions ge ts  

be t te r ;  hence the strong dependence on frequency. 1 

Since a current  source exerts  oppositely directed 

forces  on electrons and ions it should not be 

expected t o  generate such osc i l l a t ions  e f f i c i en t ly .  

48 
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The r e l a t ive  magnitudes of power i n  our high 

frequency r e su l t s  f o r  electron, ion, and trans- 

verse waves i s  probably un rea l i s t i c  f o r  most 

physical problems. 

i n  the  short  wavelength ion waves i s  due t o  the  

assumed smallness of the source. The r e su l t s  of 

Ref. 6 f o r  e lectron acoustic and transverse waves 

excited by t he  same type of source a re  iden t i ca l  

t o  ours. It is fu r the r  shown i n  Ref, 6, however, 

t h a t  as the source dimensions a re  increased beyond 

the  wavelength of the electron wave, the proportion 

of power i n  t h i s  wave i s  decreased. As the  s i z e  of 

the  source approaches or  exceeds the transverse 

wavelength the transverse wave dominates . 

The high proportion of power 

It i s  expected that increasing the  source 

dimensions would e f f ec t  our r e su l t s  i n  a l i k e  manner. 

Although no calculat ions have been made, i t  seems 

plausible  t h a t  the  ion wave would dominate only 

unt i l  t he  dimensions of t he  source approached the 

electron acoustic wavelength. The electron wave 

would then dominate u n t i l  the  s m r c e  dimensions 

approached the  transverse wavelength at which point 

t he  t ransverse wave would car ry  t,he most power. 
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